Follow up from the Canadian Green Building Council (Mr. Thomas Mueller)

1) A study on air quality from Harvard University, would it be possible to have a complete reference and/or an electronic copy of that study:
Two have already been published, with some very interesting results:
http://naturalleader.com/thecogfxstudy/
(The Impact of Green Buildings on Cognitive Function – Study 1: Indoor Environmental Quality / Study 2: Buildingomics / Study 3: Global Buildings is ongoing)

Another one, headed by Prof. Joseph Allen at Harvard, will be ready in the first quarter of 2018 and will be published at forhealth.org.

2) Nunavut’s CaGBC Membership
The Government/Province of Nunavut is currently not Member with the CaGBC.

3) A definition of “NetZero Energy Ready”
With respect to “NetZero Energy Ready”, there is no one definition. The U.S. Department of Energy (DOE) defines a zero energy ready home as “a high performance home which is so energy efficient, that a renewable energy system can offset all or most of its annual energy consumption.” The renewable energy system is typically photovoltaics, and the roof’s overall size and orientation determine the potential to generate energy onsite. There are some important limitations to the concept of net zero energy.

First, it is typically only achievable on low-rise buildings; as the roof area does not change, you can only accommodate so many building floors. NZE or NZE ready is typically achieved on single family homes or offices of one or two storeys.

Second, NZE does not view the building as part of an energy system. It assumes the grid is able to absorb excess electricity whenever the renewable energy system is generating an excess. In reality, this is not always possible, and when it is, it may raise challenges for the utility managing the grid.

Third, NZE does not equate to zero carbon. A NZE building still uses energy from the electrical grid, which will have an associated carbon footprint. If all buildings were NZE, the electrical grid would still be required to provide power at times when onsite energy production is not sufficient. NZE buildings may also use natural gas or other fossil fuels. While this energy is typically offset with additional renewable energy, the carbon equivalency of the two is not assured.